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Abstract
The continued-fraction method of solving classical Fokker–Planck equations
has been adapted to tackle quantum master equations of the Caldeira–
Leggett type. This was done taking advantage of the phase-space (Wigner)
representation of the quantum density matrix. The approach differs from those
in which some continued-fraction expression is found for a certain quantity, in
that the full solution of the master equation is obtained by continued-fraction
methods. This allows us to study in detail the effects of the environment
(fluctuations and dissipation) on several classes of nonlinear quantum systems.
We apply the method to the canonical problem of quantum Brownian motion
in periodic potentials both for cosine and ratchet potentials (lacking inversion
symmetry).

PACS numbers: 05.40.−a, 03.65.Yz, 05.60.−k

1. Introduction

The phase-space formulation of quantum mechanics has received renewed attention in the last
few decades [1–3] because it allows one to employ notions and tools of classical physics in
the quantum realm. The central object in this approach is Wigner’s function

W(x, p) = 1

2πh̄

∫
dy e−ipy/h̄�(x + 1

2y, x − 1
2y), (1)

which is merely a phase-space (x, p) representation of the density matrix �(x, x′) = 〈x|�̂|x′〉. In
a closed system, the dynamical equation for the Wigner function is equivalent to Schrödinger’s
(or von Neumann) equation while, in the h̄ → 0 limit, it recovers Liouville’s equation for the
phase-space distribution in classical mechanics.

Another remarkable property of the Wignerian representation is the average property.
The expectation value of a quantum operator Â is obtained from the corresponding classical
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variable A(x, p) (related to Â by Weyl’s rule; see [4], chapter 1) by a prescription analogous
to the classical one, namely

〈A〉 ≡ Tr(�̂Â) =
∫

dx dp W(x, p)A(x, p). (2)

Thus, in spite of not being necessarily positive, the Wigner function can be considered
as a sort of quantum mechanical ‘distribution’. Besides, the marginal distributions of W

give the true quantum probabilities of x, as P(x) ≡ 〈x|�̂|x〉 = ∫
dp W(x, p), or of p, as

P(p) ≡ 〈p|�̂|p〉 = ∫
dx W(x, p). Therefore, theWigner formalism provides a natural quantum–

classical connection. This has been specially exploited in the search for quantum analogues
of various classical effects (e.g., chaos) or in the problem of the fuzzy borders between the
quantum and classical worlds [5].

In contact with the surrounding medium, the (open) system experiences dissipation,
fluctuations and decoherence [6–8]. Typically, one is interested in a system consisting of a few
relevant degrees of freedom coupled to its environment, or bath, which has a very large number
of degrees of freedom (e.g., phonons, photons, nuclear spins, etc). The system is not necessarily
microscopic, but it can be a mesoscopic system described by some collective variables which
under appropriate conditions can behave quantum mechanically [9, 10]. Because of the
genericity of these situations and the fundamental issues raised (e.g., approach to thermal
equilibrium, dissipation in tunnelling and coherence, measurement problem), the study of
quantum dissipative systems is of interest in several areas of physics and chemistry [11].

The dynamics of an open system can, in many cases, be formulated in terms of a quantum
master equation for the (reduced) density matrix. In the Wigner representation this can be
compactly written as ∂tW = LW , with L a certain evolution operator. Taking the classical
limit, the master equation for a particle of mass M in a potential V(x) goes over the Klein–
Kramers equation [12, 13]

∂tW = [−(p/M)∂x + V ′∂p + γ∂p(p + MkBT ∂p)]W (3)

which is simply a Fokker–Planck equation in phase space. The first two terms (Poisson bracket)
generate the classical reversible evolution (Liouville equation). The last term (‘collision
operator’) accounts for irreversible effects due to the coupling to the environment (dissipation
and fluctuations). The damping parameter γ measures the strength of the coupling to the
bath, which is at temperature T . It is worth recalling that phase-space dynamics also includes
problems reducible to ‘mechanical’ analogues: Josephson junctions, certain electrical circuits,
chemical reactions, etc.

A suitable non-perturbative technique to solve classical Fokker–Planck equations of
systems with few degrees of freedom is the continued-fraction method [14]. This is a special
case of the expansion into complete sets (Grad’s) method to solve kinetic equations in statistical
mechanics [15]. In brief, the distribution is expanded into a series of orthogonal polynomials
and, as a result, the kinetic equation is transformed into an infinite set of coupled equations for
the expansion coefficients Ci. Approximate solutions are obtained by truncating the hierarchy
of equations at various levels. To get manageable expressions, however, the truncation needs
to be performed at a low level. In the continued-fraction method, instead of truncating directly,
one seeks for a basis in which the range of index coupling is short (ideally, the equation for Ci

involves Ci−1, Ci, and Ci+1). Then, the (differential) recurrence relations among the Ci can be
solved by iterating a simple algorithm, the structure of which is like that of a continued fraction
(appendix A). For the Klein–Kramers equation (3) the tridiagonal chain of coupled equations
for the Ci is called the Brinkman hierarchy [16]. It has been solved by continued-fraction
methods to study classical particles subjected to dissipation and fluctuations [14]. The method
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has also been extended to rotational Brownian motion problems involving classical spins and
dipoles (see [17] and references therein).

To deal with quantum dissipative systems, however, is a more delicate task [7]. To begin
with, phenomenological quantization of dissipative systems poses fundamental problems (e.g.,
with the uncertainty and superposition principles). A rigorous route is to model the bath in a
simple way, quantize it together with the system and eventually trace over the environmental
variables. However, the resulting theoretical frameworks are technically involved. Quantum
master equations, except for simple cases, are difficult to solve. An alternative is provided
by quantum state diffusion methods (see [18]), where stochastic evolution equations for
state vectors in Hilbert space are introduced as computational tools. Nevertheless, its
implementation seems to be restricted to systems with discrete spectrum (e.g., oscillators,
two-state systems, etc). Similarly, quantum Langevin equations [19] are of limited use
beyond nearly harmonic systems. For an arbitrary system, there exist exact path-integral
expressions for the evolution of the density matrix (involving the so-called influence functional
that incorporates environmental effects) [6, 7]. However, those expressions are difficult to
evaluate, even numerically, because the propagating function is highly oscillatory, rendering
numerical methods unstable at long times. Finally, quantum Monte Carlo simulations can
in principle always be used. Nevertheless, in spite of ongoing progress (see [18]), they are
computationally complex and suffer from the (dynamical) sign problem.

This situation strongly motivates the development of alternative methods for quantum
dissipative systems. Inspired on their suitability for classical systems, continued-fraction
techniques have been developed for a number of problems. Shibata et al [20, 21] applied them
to solve a c-number quantum Fokker–Planck equation for a spin in a dissipative environment.
Vogel and Risken [22] employed continued-fraction methods to solve master equations in
quantum nonlinear optics (see also [23]). Recently [24], this method has been extended to
study genuine phase-space problems within the Wigner formalism. A generalization of the
Brinkman hierarchy for quantum master equations of the Caldeira–Leggett type was presented.
It was shown that the continued-fraction method for the classical problem can, in principle,
be adapted to solve this hierarchy, yielding a promising technique to study several classes of
nonlinear quantum systems subjected to environmental effects.

In this paper, we first present the details necessary for the derivation of the quantum
hierarchies and discuss their solution by continued fractions. The approach is then implemented
for the problem of quantum Brownian motion in periodic potentials (a demanding problem
with (partly) continuous spectrum). Both the cosine and simple ratchet potentials (lacking
inversion symmetry) are considered. For the former, a number of previous results are recovered
(so testing the method) and extended, while the physical interpretations are revisited within
the Wigner formalism. For particles in ratchet potentials we study the effects of finite damping
(inertia) on the rectified velocities. The phenomenology is interpreted in terms of the interplay
of thermal hopping, overbarrier wave reflection, and tunnelling. Results for non-equilibrium
dynamics under oscillating forcing are also discussed, which show the combined effect of
quantum phenomena, thermal activation and dissipation in a nonlinear system. A number of
technical issues are consigned to the appendices.

2. Quantum master equations in phase space

We start from the following generic form for the quantum master equation in the Wigner
representation [25–28]:

∂tW =
[
− p

M
∂x + V ′∂p + ∂p(γp + Dpp∂p) + Dxp∂2

xp +
∞∑
s=1

(ih̄/2)2s

(2s + 1)!
V (2s+1)∂(2s+1)

p

]
W.

(4)
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The first three terms, identifyingDpp = γMkBT , give the classical Klein–Kramers equation (3).
The mixed diffusion term Dxp∂2

xpW is heuristically related to the colour of the quantum noise
[29]. The series of derivatives ∂(2s+1)

p W (Wigner–Moyal term) gives the quantum contribution
to the unitary evolution of the closed system. Conditions under which this series can be
truncated are sometimes discussed to avoid dealing with an infinite-order partial differential
equation. However, we shall fully keep this term because it can be especially important in
nonlinear systems [30].

Conditions of validity for the master-equation description are discussed in [31–33].
Equations of the type of (4) can be derived modelling the particle surroundings as a bath
of oscillators representing the normal modes of the environment. However, a number of
assumptions are typically involved like semiclassical or high-temperature bath (rendering the
kernels of the influence functional local in time), weak system-bath coupling (Born–Markov
approximations), etc. Then, one would heuristically expect equation (4) being valid for small
enough h̄γ/kBT . Notwithstanding this, the structure of the equation seems to be quite generic.
Thus, a quantum master equation recently derived for strong coupling [34], and valid for all
h̄γ/kBT , involves terms similar to those in (4) [with x-dependent coefficients and renormalized
V(x)]. Besides, the phase-space representation of the celebrated Lindblad master equation is
obtained by simply adding to (4) terms of the form ∂x(x W) and ∂2

xW [35]. Most of these
terms can be readily incorporated in the treatment below (indeed, the term Dxp∂2

xpW , absent in
the original Caldeira–Leggett equation, is included to illustrate this). The same, in principle,
would apply to possible extensions of the quantum master equation (4).

3. Preliminary manipulations of the master equation

Firstly, it is convenient to introduce appropriate scaled units. These are based on a characteristic
length x0 (e.g., the distance between the minima in a double-well oscillator, the period
in a periodic potential) and a characteristic energy E0 (e.g., a barrier height). Then one
scales frequencies by ω0 = (E0/Mx2

0)
1/2, time by ω−1

0 , forces by F0 = E0/x0, the action by
S0 = E0/ω0, etc. On the other hand, Dpp (=γMkBT in a high-T bath) is handled as an effective
temperature kBTeff = Dpp/γM and we introduce some convenient thermal rescalings via the
associated frequency ωT = (kBTeff/Mx2

0)
1/2. Thus, in the equations p is scaled by Mx0ωT ,

the potential and Dxp appear divided by kBTeff , γ enters in the combination γT = γ/ωT , time
is multiplied by ωT , while the thermal de Broglie wavelength λdB = h̄/(4MkBTeff)

1/2 enters
divided by x0.

Omitting any marks for the scaled quantities (but keeping in mind specially the thermal
rescaling of t, V(x) and p), the master equation is simply written as

∂tW =
[
−p ∂x + V ′∂p + γT ∂p(p + ∂p) + Dxp∂2

xp +
∞∑
s=1

κ(s)V (2s+1)(x)∂(2s+1)
p

]
W (5)

with the coefficient in the quantum sum given by

κ(s) = (−1)sλ2s
dB/(2s + 1)!. (6)

Planck’s constant h̄ is introduced in terms of the characteristic action S0 = E0/ω0 via the
quantum parameter K (denoted K̄ in [24]):

h̄/S0 = 2π/K, λdB = πγT /α, α = (γ/ω0)K. (7)

The second relation gives λdB in terms of the Kondo parameter α, related by the third one to
our K. The classical limit is approached as h̄/S0 → 0, i.e., letting K → ∞.

Let us now introduce a splitting of the evolution operator L that will facilitate the
calculation of the matrix elements required when expanding W(x, p) into complete sets. On
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inspecting equations (5) and (6), we see that extending the quantum sum down to s = 0, we
obtain the part V ′ ∂p of the classical term. Thus, we can decompose L into the irreversible,
kinetic and potential parts:

∂tW = (Lir + Lkin + Lv)W ,


Lir = γT ∂p(p + ∂p),

Lkin = −(p − Dxp∂p)∂x,

Lv =∑
s�0 κ(s)V (2s+1)∂(2s+1)

p .

(8)

This natural splitting has the advantage of dealing with V(x) (the most problem-dependent
part) in a unified way. Besides, we have grouped the term ∂p∂x with the kinetic term p ∂x

because they are structurally similar.

4. Derivation of the quantum hierarchies

In the expansion into complete sets approach to solve kinetic equations, the distribution is
expanded in an orthonormal basis {ψn} and the coupled equations for the coefficients Cn

derived ([15], p. 176). For the Klein–Kramers equation (3) one uses Hermite functions of p

as basis ([36], section (4.4))

ψn(p) = rne−p2/4Hn(p/
√

2), rn = [(2π)1/22nn!]−1/2. (9)

One starts with the expansion in the momentum because, while the p dependence of the
Hamiltonian is fully specified (kinetic energy p2/2M), the potential part V(x) depends on the
problem. Thus, explicit manipulations can be done on the parts involving p, which are valid
for any system. On the other hand, the Hermite basis has a number of advantages [14]; not the
least is the handling of the derivatives ∂p in the dynamical equation by means of the associated
creation and annihilation operators b = ∂p + 1

2p and b+ = −∂p + 1
2p (this will prove very

convenient in the quantum case).
For the Klein–Kramers equation the resulting equations for the expansion coefficients Cn

are called the Brinkman hierarchy [14, 16]. This plays an important role in classical systems,
both for analytical treatments—derivations of 1/γ expansions, etc—and to develop efficient
non-perturbative numerical methods. In fact, it has the structure of a three-term recurrence
relation which, after expansion in the position basis, can be solved by continued fractions. In
what follows, we shall proceed in the quantum case following as closely as possible the steps
of the classical limit.

4.1. Expansion in the momentum basis

We start by expanding the Wigner function as

W(x, p) = w
∑

n

Cn(x)ψn(p), w = e−ηp2/2

(2π)1/4
e−�(x), (10)

where we have extracted the Boltzmann-type factor w. This involves the auxiliary parameter
0 � η � 1/2 and potential �(x), which is frequently chosen proportional to V(x), i.e., � = εV .
The results should not depend on the η or ε used, but these may (i) put parts of the evolution
operator L in self-adjoint form and/or (ii) improve the stability and convergence of the eventual
numerical implementation.

From the orthonormality of the ψn(p), the expansion ‘coefficients’ can be written as
Cn = ∫

dp ψn

∑
m Cmψm = ∫

dp ψn (W/w). Then, differentiating with respect to t and using
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the evolution equation ∂tW = LW , we get the dynamical equations for Cn

∂tCn =
∑
m

Q̂nmCm, Q̂nm =
∫

dp ψnLψm, L = w−1Lw. (11)

To get the matrix elements Q̂nm, which are still operators on the x-dependence of Cm, one
needs the w−1(·)w transform of L. This can be split as L = Lir +Lkin +Lv, with Lir , Lkin, and
Lv given by equation (8). The transformation of these operators is done in appendix B, taking
advantage of results for normal ordering of b and b+ (which we use to express the ∂p and p’s
in L). Then, with the Lir , Lkin, and Lv obtained, we compute their matrix elements between
the ψn, getting the Q̂nm. The details of this part of the calculation are given in appendix C.

Introducing the results obtained for Q̂nm into ∂tCn = ∑
m Q̂nmCm one gets the following

quantum (Brinkman) hierarchy:

−∂tCn =
[(n−1)/2]∑

s=0

[s,−
n V (2s+1)]Cn−(2s+1) +

√
(n − 1)n γ−Cn−2

+ √
nD−Cn−1 + γnCn + √

n + 1D+Cn+1

+
√

(n + 1)(n + 2) γ+Cn+2 +
∞∑
s=0

[s,+
n+(2s+1)V

(2s+1)]Cn+(2s+1). (12)

The auxiliary (damping) parameters introduced read

γ± = γT η±(1 − η±), γn = γT [2n(η − σ) − η2
+], (13)

which involve the following η-related parameters (note the sign exchange):

η± = η ∓ 1
2 , σ = η−η+. (14)

In equation (12), the operators on the x dependences are

D± = d±(∂x − �′), d± = 1 + η±Dxp, � = σλ2
dB∂2

x, (15)

s,±
n = η2s+1

± κ(s)
n e−�/2

1F1(−m, 2s + 2; �), κ(s)
n = κ(s)

√
n!/m!. (16)

Here m = n− (2s+ 1), 1F1(a, c; z) is the confluent hypergeometric (Kummer) function ([37],
chapter 13.6) and κ(s) is given by equation (6). It is important to note that the s

n act only on
V(x) not on the Cm(x) (appendix B).

The quantum hierarchy (12) is equivalent to the Caldeira–Leggett master equation (4).
Previously, several hierarchies had been derived [38–41], but the treatment was for closed
(Hamiltonian) systems [38–40] or involved unsuitable bases like {pn} [38, 40, 41]. In
contrast, our hierarchy of Hermitian moments constitutes a direct quantum generalization
of the Brinkman hierarchy. To verify this, note that in the classical case only the s = 0 terms
survive in the sums of (12) (appendix C). Then, setting the usual η = 1/2, equation (12)
reduces to

∂tCn = −[
√

n(D−+V ′)Cn−1 + nγT Cn + √
n + 1D+Cn+1], (17)

which is indeed the celebrated hierarchy associated to the Klein–Kramers equation.
For potentials obeying V (s) ≡ 0, ∀s � S, the quantum hierarchy (12) is a recurrence

relation with coupling to a finite number of terms. Examples include the harmonic oscillator
V = 1

2Mω2
0x

2 and the double-well (Duffing) oscillator V = − 1
2ax2 + 1

4bx4. Finite-coupling
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recurrences are always reducible to three-term vector recurrences (appendixA) and solvable by
continued fractions, as in the classical case. However, for non-polynomial V(x), this approach
is prevented by the infinite coupling range in the index n, consequence of the infinite series of
p-derivatives V (2s+1) ∂(2s+1)

p in the Wigner–Moyal term. In what follows, we shall exploit the
expansion in the position basis to show how this problem can be circumvented.

4.2. Expansion in the position basis

Recall that the coefficients Cn are still functions of x. Inserting their expansion in an
orthonormal basis {uα(x)} into the quantum hierarchy (11), we get the generic form

Cn(x) =
∑

α

Cα
nuα(x) �

d

dt
Cα

n =
∑
m

∑
β

(Q̂nm)αβC
β
m, (18)

with matrix elements (B)αβ = ∫
dx u∗

α B̂(x, ∂x) uβ. To put (12) into the above form we just need
to (i) substitute the operators (and x-dependent coefficients) by their matrix elements (B)αβ,
(ii) attach position superscripts to the Cn, and, finally, (iii) sum over them. On doing so, we
get the expanded quantum hierarchy

− d

dt
Cα

n =
∑
s�0

∑
β

[s,−
n V (2s+1)]αβC

β

n−(2s+1) +
√

(n − 1)n
∑

β

γ−δαβC
β

n−2

+ √
n
∑

β

D−
αβC

β

n−1 +
∑

β

γnδαβC
β
n + √

n + 1
∑

β

D+
αβC

β

n+1

+
√

(n + 1)(n + 2)
∑

β

γ+δαβC
β

n+2 +
∑
s�0

∑
β

[s,+
n+(2s+1)V

(2s+1)]αβC
β

n+(2s+1). (19)

Considering that D± = d±(∂x − �′) and � = εV , we see that to get all matrix elements
involved we just need those of ∂x and of V (2s+1), namely

(∂x)αβ =
∫

dx u∗
α∂xuβ, V

(2s+1)
αβ =

∫
dx u∗

αV
(2s+1)uβ (20)

because the s
n only increase the order of the potential derivatives.

The expanded hierarchy has the form of a system of ordinary differential equations,
Ċα

n = ∑
mβ Qαβ

nm Cβ
m. If N and A are some large truncation indices for the bases {ψn(p)}

and {uα(x)}, we have a problem with (N × A) equations. One may be tempted to try direct
Runge–Kutta integration or numerical diagonalization of the associated (N × A) × (N × A)

matrix. However, the dimensions involved are typically very large, so that it is worth pursuing
a continued-fraction treatment1.

As mentioned before, the p-recurrence has a finite coupling range for polynomial
potentials. For other potentials, with an appropriate choice of the basis {uα(x)}, the matrix
elements in equation (20) may vanish when the second index β lies at a certain ‘distance’ of
the first α. Then, the expanded hierarchy would be a recurrence relation in the position indices
with a finite coupling range, also amenable for a continued-fraction treatment. To proceed
in these cases, we just need to transform the two-index hierarchies into ordinary recurrence
problems (i.e., with one index).

1 Dynamical equations for the Wigner function have in any case been tackled by purely numerical methods, like
(pseudo-) spectral methods for partial differential equations (see [42, 43] and references therein), or grid discretization
usually followed by Runge–Kutta integration [44].
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5. Matrix quantum hierarchies with one-index recurrences

In order to apply the continued-fraction method when finite coupling range in one of the indices
is attained, we need to convert first the two-index recurrences into ordinary recursions. In the
resulting one-index recurrences the coefficients will be matrices acting on appropriate vectors
formed with the Cα

n .

5.1. Matrix quantum hierarchy: p-recurrence

The generic expanded form (18) can be converted into an one-index recurrence relation in the
momentum index introducing the following vectors and matrices:

d

dt
cn =

∑
m

Qnmcm, cn =

C−A
n

...

CA
n

 , Qnm =


(Q̂nm)−A,−A · · · (Q̂nm)−A,A

...
. . .

...

(Q̂nm)A,−A · · · (Q̂nm)A,A

 ,

(21)

where (Q̂nm)αβ = ∫
dx u∗

α Q̂nm uβ. That is, for a fixed n one forms the column vector with all
the Cα

n with α = −A, . . . , A (this index may take positive and negative values). Similarly, for
given (n, m), we build the matrix Qαβ

nm ≡ (Q̂nm)αβ with all indices α, β.
Before giving explicit expressions for the matrix coefficients we introduce the following

notation: Q±s
n = Qn,n±s, Q±±

n = Qn,n±2, Q±
n = Qn,n±1, and Qn = Qn,n. Then, the matrix

quantum hierarchy (21) can be written as

d

dt
cn =

∑
s�1

Q−(2s+1)
n cn−(2s+1) + Q−−

n cn−2 + Q−
n cn−1 + Qncn + Q+

n cn+1

+ Q++
n cn+2 +

∑
s�1

Q+(2s+1)
n cn+(2s+1). (22)

We have accounted for Q±(2s)
n ≡ 0, ∀s � 2 (see equation (19)) and incorporated the s = 0

terms into the central cn±1 ones. The matrix coefficients explicitly read

(Q−(2s+1)
n )αβ = − [s,−

n V (2s+1)]αβ,

(Q−−
n )αβ = − √

(n − 1)n γ−δαβ,

(Q−
n )αβ = − √

nD−
αβ − [0,−

n V ′]αβ,

(Qn)αβ = − γnδαβ,

(Q+
n )αβ = − √

n + 1D+
αβ − [0,+

n+1V
′]αβ,

(Q++
n )αβ = − √

(n + 1)(n + 2) γ+δαβ,

(Q+(2s+1)
n )αβ = − [s,+

n+(2s+1)V
(2s+1)]αβ.

(23)

For finite coupling range in n (e.g., in polynomial potentials), the hierarchy (22) is a recurrence
relation to which continued-fraction methods can now be applied. This amounts to converting
the underlying large (N × A) × (N × A) problem into N problems with associated A × A

matrices [or A → (2A + 1)]. As the recursion ‘coefficients’ are matrices, one would need
matrix continued-fraction methods (appendix A).
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5.2. Matrix quantum hierarchy: x-recurrence

When the p-recurrence has an infinite coupling range (in periodic potentials, the Morse
potential, etc), we can convert the two-index hierarchy (18) into matrix form, but introducing
recurrences in the position index α

d

dt
cα =

∑
β

Qαβcβ, cα =

 Cα
0
...

Cα
N

 , Qαβ =


(Q̂00)αβ · · · (Q̂0N)αβ

...
. . .

...

(Q̂N0)αβ · · · (Q̂NN)αβ

 .

(24)

That is, (Qαβ)nm = (Q̂nm)αβ, with Bαβ = ∫
dx u∗

α B̂ uβ. Thus, for a fixed α one constructs the
column vector with theCα

n for alln = 0, . . . , N, and for given (α, β), the matrixQαβ
nm ≡ (Q̂nm)αβ

with all n, m. Comparing the matrix in (24) with equation (23) for (Q±s
n )αβ, we can construct

Qαβ diagonal by diagonal



(Qαβ)n,n−(2s+1) = − [s,−
n V (2s+1)]αβ,

(Qαβ)n,n−2 = − √
(n − 1)n γ−δαβ,

(Qαβ)n,n−1 = − √
nD−

αβ − [0,−
n V ′]αβ,

(Qαβ)n,n = − γnδαβ,

(Qαβ)n,n+1 = − √
n + 1D+

αβ − [0,+
n+1V

′]αβ,

(Qαβ)n,n+2 = − √
(n + 1)(n + 2) γ+δαβ,

(Qαβ)n,n+(2s+1) = − [s,+
n+(2s+1)V

(2s+1)]αβ

(25)

all other diagonals being zero (Qαβ)n,n∓2s ≡ 0, ∀s � 2.
To recognize better the structure of these matrices, we decompose them into the ‘free’

and potential contributions Qαβ = Qf
αβ + Qv

αβ. For Qf
αβ, including the kinetic and irreversible

terms, we have the pentadiagonal structure (tridiagonal for η = 1/2)

Qf
αβ = −



γ0δαβ

√
1D+

αβ

√
1·2 γ+δαβ 0 0 0

. . .

√
1D−

αβ γ1δαβ

√
2D+

αβ

√
2·3 γ+δαβ 0 0

. . .

√
1·2 γ−δαβ

√
2D−

αβ γ2δαβ

√
3D+

αβ

√
3·4 γ+δαβ 0

. . .

0
√

2·3 γ−δαβ

√
3D−

αβ γ3δαβ

√
4D+

αβ

√
4·5 γ+δαβ

. . .

0 0
√

3·4 γ−δαβ

√
4D−

αβ γ4δαβ

√
5D+

αβ

. . .

0 0 0
√

4·5 γ−δαβ

√
5D−

αβ γ5δαβ

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



.
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The part due to V(x), on the other hand, has the following alternate dense structure, reflecting
the odd powers of ∂p in the Wigner–Moyal term:

Qv
αβ = −



0 [0,+
1 V ′]αβ 0 [1,+

3 V (3)]αβ 0 [2,+
5 V (5)]αβ

. . .

[0,−
1 V ′]αβ 0 [0,+

2 V ′]αβ 0 [1,+
4 V (3)]αβ 0

. . .

0 [0,−
2 V ′]αβ 0 [0,+

3 V ′]αβ 0 [1,+
5 V (3)]αβ

. . .

[1,−
3 V (3)]αβ 0 [0,−

3 V ′]αβ 0 [0,+
4 V ′]αβ 0

. . .

0 [1,−
4 V (3)]αβ 0 [0,−

4 V ′]αβ 0 [0,+
5 V ′]αβ

. . .

[2,−
5 V (5)]αβ 0 [1,−

5 V (3)]αβ 0 [0,−
5 V ′]αβ 0

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


.

With an appropriate choice of the basis {uα(x)} the matrix elements (B)αβ may couple only a
finite number of basis functions. Then, the recurrence (24) would be solvable by continued
fractions when the n-recurrence is infinite and this approach is seemingly precluded. Even for
finite coupling in n, the α-recurrence may be preferable in certain situations (e.g., at low T ),
as indicated by Risken for a cosine potential in the classical limit ([14], section (11.5.6)). In
these cases, one has been able to reduce the underlying large (N × A) × (N × A) problem to
A problems with associated N × N matrices.

6. Density matrix, observables, and marginal distributions

Once the ċn = ∑
m Qnmcm or ċα = ∑

β Qαβcβ are solved, we can reconstruct the Wigner
function from its expansion coefficients Cα

n in the double basis {uα(x) ψn(p)}
W(x, p) = w(x, p)

∑
n,α

Cα
nuα(x)ψn(p) (26)

obtaining the full solution of the quantum master equation. If preferred, one can switch to the
familiar density matrix �̂ by the inverse of transformation (1)

�(x, x′) =
∫

dp eip(x−x′)/h̄W( 1
2 (x + x′), p). (27)

We can get any observable inserting the above W(x, p) in equation (2) for the averages.
Nevertheless, common observables can many times be extracted directly from the Cα

n .
Let us illustrate this with transport observables, which are characterized by the averages

〈p�〉. For an arbitrary function of p only, we get from (26)

〈f 〉 =
∫

dx dp W(x, p)f(p) =
∑
n,α

Cα
n

∫
dx e−�(x)uα(x)

∫
dp r0 e−η p2/2f(p)ψn(p), (28)

where we have used w = r0 e−η p2/2 e−�, with r0 = 1/(2π)1/4 (equations (9) and (10)). Next
we introduce the auxiliary integrals (for their calculation see appendix D)

Iα =
∫

dx e−�(x)uα(x), K(�)
n =

∫
dp r0 e−η p2/2p�ψn(p). (29)

Then, the moments (case f = p�) can be written in terms of the expansion coefficients as
〈p�〉 = ∑

n K(�)
n (

∑
α Cα

n Iα). Taking into account that Hn has the parity of n and carrying this
to K(�)

n , we get for the first two

〈p〉 =
∑

n

K
(1)
2n+1

(∑
α

Cα
2n+1Iα

)
, 〈p2〉 =

∑
n

K
(2)
2n

(∑
α

Cα
2nIα

)
. (30)
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The first moment is the current and the second characterizes fluctuations around it. The
zeroth moment corresponds to the normalization of W , and imposes on the Cα

n the condition
〈p0〉 = ∑

n K
(0)
2n (

∑
α Cα

2n Iα) = 1.
Finally, the quantum probabilities of x and p, given by the marginal distributions

P(x) = ∫
dp W(x, p) and P(p) = ∫

dx W(x, p), can be expressed in a similar fashion

P(x) = e−�(x)
∑

α

uα(x)
(∑

n

Cα
nK(0)

n

)
, (31)

P(p) = r0e−η p2/2
∑

n

ψn(p)
(∑

α

Cα
nIα

)
. (32)

7. Periodic potentials: matrix elements and limit cases

Henceforth, we shall apply the method described to incorporate fluctuations and dissipation
in the problem of quantum transport in periodic potentials. The simplest model consists
of a particle evolving in a cosine potential subjected to external forces (tilted ‘washboard’
potential), which is also a paradigm of quantum Brownian motion [45–47]. Others include
potentials lacking inversion symmetry (ratchets), which have been used to model rectification
of current and directional motion in several systems [48]. These problems are demanding
because periodic potentials have (partly) continuous spectra [49], rendering inappropriate
methods devised for systems with discrete levels. In this section we compute the matrix
coefficients of our recurrences for arbitrary periodic V(x). With them we can implement the
continued-fraction method to solve the quantum master equation, which we first check by
regaining the classical dissipative and quantum Hamiltonian limits.

7.1. Matrix elements

In periodic potentials the p-recurrence cannot be used because of its infinite coupling range
(the derivatives of V(x) neither vanish, nor decrease, as they are essentially the potential itself).
However, one can guess that the x-recurrence may have a coupling range related to the number
of harmonics in V(x). To exploit this we introduce plane waves as basis functions and the
Fourier expansion of the potential derivative:

uα(x) = eiαx

√
2π

, V ′(x) =
∑

α

V ′
α eiαx. (33)

To preserve the periodicity of W , one extracts the external force F from V(x) including it in a
generalized D± = d±(∂x − �′) − η±F (cf equation (15)). Then, the auxiliary potential � is
set proportional to the periodic part � = εV .

To compute the matrix elements in Qαβ, we only need to do the integrals (20) with plane
waves for uα. Using ∂xuα = iα eiαx/

√
2π, the integral

∫ 2π

0 dx ei(β−α)x = 2πδαβ, and the
expansion V (s) = ∑

r V (s)
r eirx, we find

(∂x)αβ = iα δαβ, [V (s)(x)]αβ = V
(s)
α−β. (34)

From these elements and V (2s+1)
q = (−1)sq2sV ′

q we get

[s,±
n V (2s+1)]αβ = 0 δαβ − η2s+1

± Gs
n(−σq2λ2

dB) V ′
α−β,

D±
αβ = (id±α − η±F ) δαβ − d±ε V ′

α−β

(35)
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with q = α − β, m = n − (2s + 1) and (cf equation (16))

Gs
n(z) = |κ(s)

n (q)|e−z/2
1F1(−m, 2s + 2; z), |κ(s)

n (q)| = (qλdB)2s

(2s + 1)!

√
n!

m!
. (36)

That is, κ(s)
n (q) is the coefficient in (16) with λdB → qλdB. Inserting equation (35) into the

general matrices Qαβ of section 5 we explicitly get the matrix coefficients of our recurrences
(appendix E). For the cosine potential

V(x) = −V0 cos x (37)

the coupling range is 1, because V ′
q = 0 for |q| > 1 and we have a three-term recurrence

ċα = Qα,α−1cα−1 + Qα,αcα + Qα,α+1cα+1. For a two-harmonic ratchet potential

V(x) = −V0[ sin x + (r/2) sin(2x)] (38)

the range is 2 (five-term recurrence) because V ′
q = 0 for |q| = |α − β| > 2, and so on.

As we restricted 0 � η � 1/2, we have σ = η−η+ = η2 −1/4 � 0, so that z = −σq2λ2
dB �

0. Thus, the argument of Gs
n is positive and exp(−z/2) can act as a regularization factor (an

advantage of allowing η �= 1/2 in (10)). This factor reduces the weight of the off-diagonal
terms inside Qαβ, enhancing the numerical stability when going into the deep quantum regime.
Then we typically use η ∼ 0–0.05, while for classical calculations η = 1/2 performs better.
Concerning the auxiliary potential �, for the problems considered below we use ε = 0.
Convergence is achieved with N ∼ 100 Hermite functions and A ∼ 25–50 plane waves (then
N × (2A + 1) ∼ 104). Finally, a word on the scaled quantities (section 3). To get period 2π,
we have set x0 = a/2π with a the original period. The characteristic energy E0 is given by the
potential amplitude E0 = V0; then kBT is scaled by V0 and the other characteristic quantities
are: action, S0 = x0

√
MV0, frequency, ω2

0 = V0/Mx2
0, and force, F0 = V0/x0.

7.2. Classical limit

Before going into the quantum regime, let us check that for small enough h̄/S0 = 2π/K we
recover the classical results. Recall that in the deterministic limit a particle in a periodic
potential has two critical forces F1 (retrapping force) and F3 (force at which the barrier
disappears). For F < F1 the attractors of the dynamical system are solutions ‘locked’ around
the potential minima, whereas for F > F3 the ‘running’ solution is an attractor globally stable.
In the range F1 < F < F3 the system exhibits bistability. Finally, F1 decreases with γ (for
the cosine potential F1 ∼ (4/π)V

1/2
0 γ), whereas F1 tends to F3 as the damping increases,

narrowing the bistability range.
Thermal fluctuations are incorporated by the Klein–Kramers equation, which for classical

particles in periodic potentials was solved by continued fractions in [14, 50–52] (using the
p-recurrence). Here we solve the Caldeira–Leggett quantum master equation (4) using a large
K. As shown before, when V(x) = −V0 cos(x) we have a three-term recurrence which, for
the static response, can be written as

Q−
α cα−1 + Qαcα + Q+

α cα+1 = 0 (39)

with Q−
α = Qα,α−1, Qα = Qα,α, and Q+

α = Qα,α+1. Solving it with the continued-fraction
method we reobtain Risken’s impressive graphs for the classical distribution W(x, p) ([14],
chapter 11.5). Some of them are displayed in figure 1 for weak damping and various external
forces (here F1  0.064 and F3 = 1). At low F the distribution, always periodic along x,
has maxima at the potential minima, while the profile in momenta is a Maxwellian envelope
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Figure 1. Wigner functions in the classical limit (K = 1000) for a particle in a tilted sinusoidal
potential (two periods are displayed along x). Here γ = 0.05, and T = 1, while F = 0, 0.075,
0.15, and 0.2 (left to right, top to bottom).

∼ exp(−p2/2). As F is increased we see the evolution from these locked solutions (〈p〉  0)
to bistability between the locked and running solutions, and eventually purely running states
W ∼ exp[−(p − F/γ)2/2] are obtained at large forces.

7.3. Hamiltonian quantum case

7.3.1. Bands and quantum parameters. Having checked the retrieval of the classical results,
we now enter the quantum regime by decreasing K ∼ S0/h̄. Firstly, it will be useful to get a
more quantitative feeling of the relation of our parameter K and ‘how quantal is the system’.
To this end we study the bands of the corresponding Hamiltonian problem (without force).
Inserting the Bloch function �mq(x) ∝ exp(iqx)Umq(x) in the Schrödinger equation, we arrive
at the following eigenvalue problem (in scaled units; section 3):[

−1

2

(
2π

K

)2

(iq + ∂x)
2 + V(x)

]
U(x) = EU(x), − 1

2 � q � 1
2 . (40)

Expanding U(x) in plane waves (33) and truncating |α| at some large A one gets a
(2A+1)× (2A+1) matrix which is diagonalized numerically. Various bands E(q) pertaining
to problems discussed below are displayed in figure 2. We see that the rule of thumb is that K/2
is of the order of the number of bands lying below the barrier. Finally, the quantum parameter
used by Kandemir [53] is (K/π)2, while Chen and Lebowitz employed �q = π/K [54, 55].
Besides, for a Josephson junction problem we simply have K = π(EJ/2EC)1/2, with EJ and
EC the Josephson and Coulomb energies.

7.3.2. Wignerian representation. Let us continue for a while in the Hamiltonian case to
familiarize ourselves with the structure of the Schrödinger eigenstates in a phase-space
representation. Kandemir [53] obtained analytical approximations for the eigenfunctions of a
particle in a cosine potential in terms of Mathieu functions. They were represented through the
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Figure 2. Energy bands for various K (reduced Kondo parameter (7)). The potential profile is
plotted to show the number of bands below the barrier. Left panels: cosine potential for K = 1 (as
in figures 3 and 4), with the free-particle parabolic relation E ∝ q2, and for K = 200 (figure 7),
together with the first levels of the associated anharmonic oscillator (dots; equation (50)). Right
panels: ratchet potential (38) with r = 0.44 for K = 10 and K = 20, as in figure 6.

-4
0

4P 0

5

10

X
0

0.05

0.1

-4
0

4P 0

5

10

X
0

0.05

0.1

Figure 3. Wigner functions in the absence of dissipation for a particle in a sinusoidal potential (two
periods are displayed). The reduced Kondo parameter is K = 1 (left) and 2 (right). The ‘islands’
correspond to zones of negative W .

Wigner function associated to the density matrix of pure states �(x, x′) = �(x)�∗(x′). (In [53]
various Dirac deltas occurring were regularized with Gaussians δ(p) ∼ (k/π) exp(−k2p2) and
in the plots k = 1 was used; we attain the same setting T = 1 since our p is thermally rescaled.)

Using a very small damping (γ = 10−6) in the Caldeira–Leggett master equation we
reobtain Kandemir’s Hamiltonian results for the ground state (figure 3). We see that at low
K the state is extended or delocalized, becoming more localized at the potential wells when
K ∝ S0/h̄ is increased. According to Kandemir [53], the regions of negative W are associated
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to Brillouin zone boundaries. We have represented a larger range of p to see how these W < 0
islands are repeated in the p direction (W can be as small as W ∼ −10−9 bordering the limits
of our numerical accuracy).

To see how these structures arise, note that for small K the potential can be treated
perturbatively (equation (40)). Then, the wave functions have the form �q(x) ∝ eiqx(1 +
λ e+ix + λ∗e−ix), with λ = i(K/2π)2. The first term is a pure plane wave, and the rest first-
order corrections due to the sinusoidal V(x). Performing the Wigner transform (1) of this
�q(x), we get for the ground state q = 0 (cf [56], p 314)

W(x, p) = δ(p) + |λ|2[δ(p − 1) + δ(p + 1)]

−2|λ|2 cos(2x)δ(p) + 2iλ sin(x)[δ(p − 1
2 ) + δ(p + 1

2 )]. (41)

The first line gives the momentum localization at p = 0 (unperturbed) and at p = ±1. The
first term in the second line arises from the interference of e+ix and e−ix, and is responsible for
the weak modulation of the height of the p = 0 bell along x. This modulation is more intense
for larger λ (i.e., larger K). The last term accounts for the interference between the plane wave
centred at p = 0 with those at p = ±1, and can produce the negative islands. We therefore
see that the above simple functional form captures most features of the Wigner functions of
figure 3.

8. Periodic potentials: quantum dissipative case

Having checked the connection with the classical and Hamiltonian quantum limits, we finally
include dissipation and temperature in the quantum case. Here examples of particles in cosine
and ratchet potentials will be discussed.

8.1. Quantum Brownian motion in a cosine potential

Transport properties of weakly damped particles in a cosine potential were studied by Chen
and Lebowitz [54, 55]. They started from the system-plus-bath density matrix, traced out the
bath variables, and performed a perturbative calculation in the potential height (followed by a
resummation) to get 〈p〉. For low forces a free-particle like behaviour 〈p〉 ∝ F/γ was obtained.
Increasing F , the wave vector associated to p approaches the first zone boundary (figure 2).
There, while Landau–Zener tunnelling can bring the particle to the next band, Bragg scattering
reduces the velocity (∝ ∂E/∂q). Eventually, at larger forces, p corresponding to states inside
the next band become favoured, and the free-particle behaviour is progressively recovered.

Since high kBT/h̄γ approximations were involved in their calculations, we set Dpp =
γMkBT and Dxp = 0 in the master equation (4). Solving it with the continued-fraction method
we reobtain the effect just described (figure 4; here we work in the regime h̄γ/kBT ∼ 0.1).
Note that the quantum slowing effect is reduced as γ increases, since the coupling to the bath
‘broadens’ the effective energy levels. This broadening makes the presence of the band gap less
relevant (‘bridges’ it) and brings the curves progressively closer to the free-damped-particle
behaviour 〈p〉 ∝ F/γ .

With our method we get, in addition, the Wigner function (i.e., the full density matrix).
The distribution of velocities (32), P(p) = ∫

dx W(x, p), when the curves start to rise again
(F/γ ∼ 4.5), shows two peaks separated by a minimum corresponding to the wave vector of the
first zone boundary. Loosely speaking, the system shows coexistence of two quantum ‘running’
solutions. Classical running solutions have a wiggling structure along x, as the particle slows
down near the potential maxima (figure 1). The full W(x, p) shows that the quantum running
solutions have a nearly straight structure (substrate insensitive). We also recognize the familiar
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Figure 4. Upper panels. Left: 〈p〉 versus F for various dampings at T = 0.5 and K = 1. Right:
marginal distribution of momenta P(p) = ∫

dx W(x, p) for γ = 0.01 at F/γ = 3.5, 4, 4.5, 4.75,
and 5. The arrows mark the zone boundaries |p| = π/K. Lower panels: two views of W(x, p) for
γ = 0.01 and F/γ = 3.5.

crescent islands of negative W at large p (there W ∼ −0.0003). Around p ∼ 0 a complex
structure is developed along x (‘locked part’), with the maxima deformed and the minima
becoming slightly negative (W ∼ −0.005). These features may reflect some interference
between the locked and the nearby running solution. However, simply adding a plane wave
e+ip0x to the �q(x)|q=0 used to analyse the Wigner functions of the Hamiltonian problem
(equation (41)) we have not been able to reproduce such structure. In any case, it is erased
when integrating over x to get P(p).

8.2. Quantum Brownian motion in ratchet potentials

We now turn our attention to periodic potentials without spatial inversion symmetry. This
feature combined with out-of-equilibrium conditions can give rise to directional motion with
net unbiased driving (ratchet effect). This directional motion has been invoked to explain the
behaviour of molecular motors and, with the emergence of nanoscience, opens the way to
build mesoscopic devices and engines based on it. The theoretical work has concentrated on
the classical behaviour and in the high-damping regime [48]. The few quantum studies also
addressed strong system-bath coupling in two situations: semiclassical [57] and an extreme
quantum case disregarding thermal effects [58]. An exception to the large γ studies is [59], but
there the substrate potential (and the force) were treated perturbatively. Here, we shall solve
the quantum master equation (4) with the (non-perturbative) continued-fraction method for
particles in ratchet potentials, taking into account finite damping (∼ non-negligible inertia).

For the ratchet potential (38), the Fourier coefficients of V ′(x) are V ′
±1 = −V0/2kBT and

V ′
±2 = −rV0/2kBT (recall the thermal scaling of V ; section 3). We use r = 0.44, which
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Figure 5. Upper panels: Wigner functions for a ratchet potential in the classical limit (K = 1000)
with γ = 0.05 and T = 1. Two forces are used F = −0.1 (left) and F = 0.1 (right), to show the
lack of symmetry in the response (running part more developed to the easy side) and the locked
regions reflecting the potential profile. Lower left: Rectified classical velocity versus temperature
for various values of the damping and force |F | = 0.05. Right: γ〈p〉 versus T for the positive
force.

smooths a small shoulder that this potential exhibits on the ‘easy’ side (figure 2). As discussed
before, the range of index coupling is 2, which gives a five-term recurrence. For the stationary
response it can be written as (cf equation (39))

Q−−
α cα−2 + Q−

α cα−1 + Qαcα + Q+
α cα+1 + Q++

α cα+2 = 0, (42)

which can be folded onto a canonical three-term recurrence by introducing appropriate (block)
vectors and matrices (appendix A).

The potential considered is the minimal extension of the cosine potential lacking inversion
symmetry, so that the average velocities can be different for positive and negative forces (see
figure 5). We excite the system with a square-wave force switching alternatively between ±F ,
and compute the ‘rectified’ current of particles

γ〈p〉r = γ〈p〉+F + γ〈p〉−F . (43)

Here 〈p〉±F are the corresponding stationary velocities since we consider adiabatic conditions
(ω → 0). In what follows, we briefly investigate the classical limit (understudied for finite
damping) and then proceed to study quantum corrections.

8.2.1. Classical case. Figure 5 displays 〈p〉r as a function of T , showing the appearance of
non-zero rectified velocities (ratchet effect). The rectification is optimum at some intermediate
temperature (at too low T there is hardly a response, and at too high T the potential is irrelevant,
so its asymmetry plays no role in either case). At γ = 10 the results coincide with those
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obtainable from the analytical 〈p〉 for overdamped classical particles ([14], chapter 11.3) (see
also [48, 60])

γ〈p〉 = 2πT(1 − e−2πF/T )∫ 2π

0 dx e−φ(x)
∫ 2π

0 dy eφ(y) − (1 − e−2πF/T )
∫ 2π

0 dx e−φ(x)
∫ x

0 dy eφ(y)
(44)

with φ(x) = [V(x)−Fx]/T . Inertia, however, broadens the 〈p〉r curves and shifts the maxima
to higher T (for the lowest γ = 0.05 the maximum moves to a slightly lower T ; see below).
This broadening is accompanied by a slower decrease of 〈p〉r with T . This is consistent with
the asymptotic behaviour of 〈p〉r when T → ∞ [59]. For overdamped particles it goes as
〈p〉r ∼ T −4, while for weak damping it decreases only with 〈p〉r ∼ T −(17/6) (17/6 � 3). We
have checked that our results recover these functional dependences (curves not shown due to
the smallness of the asymptotic 〈p〉r ∼ 10−6–10−7).

In our case F � γ ∼ F1 (the ‘retrapping’ force; section 7.2), so that at T = 0 the attractors
are locked solutions. Then, the absolute γ〈p〉 versus T curves start from 〈p〉 = 0 at T = 0,
depart from zero as T is increased and evolve towards γ〈p〉 = F for T → ∞ (free damped
particle). In the overdamped case this evolution is nearly a step, whereas the slope of the initial
raising decreases with decreasing γ (if F < F1). To understand this, let us assimilate 〈p〉 to
the escape rate  (modified by some mean free path), so that γ〈p〉 ∼ γ. Kramers’ [61] theory
shows that γ increases monotonously with γ . Therefore, the γ〈p〉 versus T curves for finite γ

must lie ordered below the overdamped result. On the other hand, the maximum rectification
occurs in the temperature region where γ〈p〉 transits from 0 to F . This intermediate region is
narrower (and the slopes steeper) the higher the damping is (figure 5), while the curves start
to raise from zero at a lower T . Therefore, increasing the damping the γ〈p〉r curves will be
narrower and the maxima shift to lower T , as observed. Eventually, this also allows to explain
the anomalous curve showing the return (γ = 0.05). Here γ ∼ F , so that at T = 0 the system
starts close to the zone of bistability. Then the particle can perform incursions into the running
solution, increasing the initial slope of γ〈p〉±F but now when the damping is lowered, shifting
the maximum to a lower T .

8.2.2. Quantum corrections. After the mandatory exploration of the classical limit, we
proceed to make the system quantal by decreasing K. Figure 6 shows the rectified current
with K = 15 (with seven bands below the barrier; cf figure 2) for various γ , together with
the reference classical curves. We have set |F |/γ = 1 in all cases, to have roughly the same
amount of locked and running components in the solutions. At high temperatures (kBT � V0)
the classical and quantum curves coincide, as expected. However, decreasing T down to
kBT ∼ V0, the ratchet effect gets reduced or enhanced, with respect to the classical result,
depending on the dissipation. Finally, at low temperatures (kBT � V0) the rectification is
always reduced.

To understand qualitatively the underlying physics, we turn to some semiclassical results
for various related problems. Firstly, let us consider the reflection/transmission coefficient for
an asymmetric saw-tooth potential ([62], sections 50, 52). The results depend on the energy of
the incident quantum particle. The reflection coefficient for energies higher than the barrier,
R, and the underbarrier transmission coefficient, T , read

R = h̄2/2M

(4E)3
(f2 − f1)

2, T = exp

[
−2

h̄

∣∣∣∣∫ b

a

dx p(x)

∣∣∣∣] (45)

where f1, f2 are the slopes at both sides of the cusp, E the particle energy, and p(x) =√
2M[E − V(x)]. Suppose now that we have an asymmetric potential, with an easy direction to

the right, and we deform it with forces ±F , computing the corresponding reflection coefficients
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Figure 6. Rectified velocity versus T with γ = 0.2, 0.1, 0.05 (using |F |/γ = 1) for K = 15 and
the reference classical curve (K = 1000). The insets of γ = 0.2 and 0.05 show enlargements of
the peaks (together with results for K = 20 and 10). Lower right panel: Kramers classical rate
versus γ at various forces (from Mel’nikov–Meshkov formula [61]). The crosses mark the points
with F/γ = 1.

R+ and R−. For energies higher than the barrier, the above R gives R+/R− < 1 (appendix
F). That is, overbarrier wave reflection is less intense when the slope of the potential is smaller.
Thus overbarrier transmission (as thermal hopping) is favoured along the easy direction for
energies above the barrier [63]. In contrast, using T for energies below the barrier, we find
T+/T− < 1, so that R+/R− > 1. That is, the reflection is more intense in the easy direction
or, equivalently, tunnelling events are favoured in the hard direction [57].

For a distribution of particle energies one would expect a competition between these
two types of quantum effects. Then, the enhancement of the rectified velocity under ±F

forcing for the γ = 0.2 curve follows from the increase of the thermal escape with γ in the
intermediate-to-low damping range γ � 0.5 (figure 6). At that damping, more escape events
occur and the particles launched over the barrier are subjected to the discussed phenomenon
of wave reflection, which favours net motion along the easy side and hence increases 〈p〉r.
Lowering the damping, on the other hand, fewer escape events are produced and wave reflection
becomes progressively dominated by tunnel events (favouring the hard direction). Incidentally,
at kBT ∼ V0 one would expect the tunnel to be thermally assisted through the higher bands,
which are wider. A simple estimation of channel probabilities comes from multiplying a band
thermal population (using Kramers’rate) by the probability of tunnel (given by the semiclassical
transmission coefficient T ). Here the exponential reduction of  with E competes with the
exponential increase of T for the upper bands (appendix F). At kBT ∼ V0 and for K = 15 we
find that tunnel is indeed favoured through the upper bands.
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To check that the behaviours found at the maxima are systematic, we increase K to 20
(nine bands below the barrier) and reduce it to K = 10 (four bands; here the temperatures
around the peak are still inside the range of validity of the master equation, small h̄γ/kBT ). The
results (insets) show clearly the tendency to amplify either the enhancement or the reduction
when the system becomes more quantal.

Finally, at low temperatures (kBT ∼ V0/5) thermal activation becomes inefficient for
all dampings. Then a reduction of the rectification is expected, due to dominance of below-
barrier energies and hence of tunnel events (through the lowest bands). Note that the decrease
in 〈p〉r relative to the classical results is comparable in the curves shown. This suggests
that we have similar crossover temperatures T0 in this damping range. (T0, below which
quantum effects dominate, is useful as a measure of quantum corrections at a given T .) This
quantity is known exactly in the problem of the escape from a ‘quadratic-plus-cubic’ potential
V(x) = 1

2Mω2
0x

2[1 − (2x/3x0)] ([7], chapter 14)

T0 = (h̄ω0/2πkB)(
√

1 + a2 − a), a = γ/2ω0. (46)

In our units T0 → (
√

1 + γ2/4 − γ/2)/K and in the damping range studied the factor in
brackets is close to 1 (∼ 0.9, 0.95, 0.975). This gives crossovers T0 ∼ 1/K ∼ 0.07 and hence
comparable reductions of the ratchet effect, as observed. This reduction of the rectification
is the precursor of the current reversals (〈p〉r < 0) found in these systems when tunnelling
completely dominates. Although we find small 〈p〉r < 0 in some cases, the results cannot be
fully trusted. For example, at γ = 0.2, K = 15 and T = 0.2, we have h̄γ/kBT ∼ 0.5, which
is bordering the limits of validity of the quantum master equation employed here.

9. Periodic potentials: dynamic response

We conclude with the study of the (non-adiabatic) dynamic response to oscillating forces
F(t) = �F cos(ωt). Then, the coefficients of the expansion (26) of the Wigner function are
periodic functions of t, so they can be Fourier-expanded as follows:

C(t) = C(0) +
∞∑

k=1

(�F

2

)k

(C(k)e+ikωt + C(−k)e−ikωt). (47)

To lowest order in the probing field, the static part of the corresponding vectors (equation (24))
obeys a recurrence relation of the type (see appendix G)

Q−
α c

(0)
α−1 + Qαc

(0)
α + Q+

α c
(0)
α+1 = 0. (48)

The equations for the harmonics have the form (I is the identity matrix)

Q−
α c

(k)
α−1 + (ikωI + Qα)c

(k)
α + Q+

α c
(k)
α+1 = −f α (49)

with the ‘forcing’ f α involving the previous order results. Specifically, f α ∼ �Qαc
(k−1)
α , with

�Qα the part of Qα corresponding to �F , namely

�Qα =



0
√

1η+�F 0 0
. . .

√
1η−�F 0

√
2η+�F 0

. . .

0
√

2η−�F 0
√

3η+�F
.. .

0 0
√

3η−�F 0
. . .

. . .
. . .

. . .
. . .

. . .
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Figure 7. Linear dynamical susceptibility versus frequency at T = 0.05 and K = 200 with
γ = 0.01 (∼ classical), 0.0003 and 0.0001 (less to more peaked curves). Left panel: real part.
Right panel: imaginary part (dashed line, γ = 0.0001 but halving T = 0.025). Vertical lines:
loci of the transition frequencies of the associated quadratic plus quartic anharmonic oscillator
(equation (51)).

(see appendix E for the general Qαβ; the �Qα actually entering in f α is divided by �F ,
cf equations (G.1) and (G.4)). Equations (48) and (49) can be solved sequentially with the
continued-fraction method (first k = 0, then k = 1, etc).

Figure 7 shows the linear susceptibility (k = 1) computed in this way for a particle in
a cosine potential as a function of ω. (Here we return to safe ground because h̄γ/kBT ∼
10−2–10−4; for related dielectric and Kerr relaxation curves of a quantum rotator see [64]
and references therein.) For the largest damping the results correspond to the classical limit.
There the line-shape χ′′(ω) broadens and extends to frequencies lower than the oscillation
frequency near the bottom of the potential wells (ω/ω0 = 1 in our units). For low damping, this
classical spreading of oscillation frequencies has an important contribution from the amplitude
dependence of the period of oscillation in anharmonic potentials [14, 50]. This non-dissipative
contribution to χ′′(ω) is also known in classical spin problems, where the precession frequency
depends on Sz due to the magnetic anisotropy [65, 66].

The quantum regime is approached by decreasing the Kondo parameter α ∼ γK (equation
(7)). Reducing γ with a fixed K we find that the χ(ω) curves develop a multipeaked structure.
These peaks could be vaguely seen as the mentioned nonlinear oscillations becoming quantized.
To give content to this statement, we investigate perturbatively the effect of the anharmonic
terms of a cosine potential (those beyond ∝x2) on the energy levels of the harmonic oscillator
part. Since the main contribution should come from the quartic term, we consider the potential
V(x) = 1

2Mω2
0x

2 + bx4. First-order perturbation theory gives the eigenvalues ([67], chapter
6.3)

Em  h̄ω0(m + 1
2 ) + 3b(h̄/2Mω0)

2(2m2 + 2m + 1). (50)

Expanding the cosine potential V(x) = − V0 cos(x/x0), we identify Mω2
0 = V0/x

2
0 and

b = −V0/(x
4
0 4!) (<0, soft anharmonicity). Then we can compute the level spacing

�Em+1,m = h̄ω0

[
1 − h̄(m + 1)

8Mω0x
2
0

]
, (51)

which has acquired a dependence on the level index m absent in the harmonic case. The
associated transition frequencies Em+1,m/h̄ are plotted in figure 7 (scaled as ωm+1,m/ω0 =
1 − π(m + 1)/4K). They agree well with the location of the main peaks of the quantum
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χ′′(ω) curves, supporting their relation with the nonlinearity of the potential. Furthermore, the
contribution from transitions between the higher levels should be reduced when they are less
populated. Decreasing T , we indeed see that the corresponding peaks (located at lower ω) are
substantially reduced. In the suggestive language of nonlinear oscillations, we would say that
lowering the temperature the large-amplitude oscillations (having longer period) become less
probable.

The applicability of the quantum nonlinear oscillator picture is grounded on the flatness
of the lowest bands at the K considered, which are well approximated by constant levels (see
figure 2). We have computed the semiclassical width of the bands in a cosine potential in
appendix F. An upper bound for the width (equation (F.9)) reads in dimensionless units as
Wb = (4/K) exp [− 1

2K(1−ε)], with ε = E/V0 the band mean energy relative to the potential
amplitude. For moderate K this bound gives in fact very flat bands, specially the deepest ones
(E → −V0). This also implies that the width of the χ′′(ω) peaks has a negligible contribution
from the intrinsic level width, being dominated by the damping and thermal broadening.

10. Discussion

Traditionally, the continued-fraction method has been employed to solve Fokker–Planck
equations for few-variable classical systems (translational and rotational problems). When
compared with numerical simulations of the Langevin equation, the method has several
shortcomings: (i) it is quite specific to the problem to be solved (one needs to recalculate
the recurrence coefficients for each potential), (ii) its convergence and stability depend on
the parameters of the problem (and can be poor in some ranges) and (iii) it does not return
‘trajectories’, which in the simulations provide helpful insight. Nevertheless, when the method
can be used, its advantages are most valuable: (i) it is free from statistical errors, (ii) it
is essentially nonperturbative, (iii) it is especially apt to get stationary solutions (static and
dynamic), (iv) it has high efficiency (allowing one to explore parameter ranges out of the reach
of the simulation) and (v) it gives the distribution W , which certainly compensates for the lack
of trajectories.

For these reasons, and the lack of quantum Langevin simulations, it was worth developing
continued-fraction methods for quantum dissipative systems. This had been done for problems
of spins in a thermal bath and in quantum nonlinear optics. In this paper, we have discussed in
detail the adaptation of the continued-fraction method to tackle quantum master equations in
phase-space problems, taking advantage of the parallels with the classical case provided by the
Wigner formalism. We have seen that the quantum extension of the continued-fraction method
is more problem-dependent (except for polynomial potentials), due to the necessity of using
the x-recurrence of the quantum hierarchies and finding suitable bases. Nevertheless, it inherits
from the classical methods most of the above-mentioned advantages, in particular, obtaining the
Wigner function, from which any observable can be computed. Furthermore, the eigenvalue
spectrum of the system, although helpful in understanding the physics, is not necessarily
required. This is advantageous when dealing with non-bounded Hamiltonians, continuous
spectra, etc. Finally, by changing the appropriate quantum parameter, the connection with the
classical results is attained in a natural way.

Note that ‘continued-fraction’ is a quite generic term (like ‘series expansion’), which
can be found in many different contexts, and in particular in works dealing with quantum
dissipative systems (see, e.g., [68] and references therein). However, in those cases one usually
obtains some continued-fraction expression for a certain quantity (e.g., the linear susceptibility,
memory functions, etc), whereas we have obtained the complete solution of the quantum master
equation by continued-fraction methods. The approach allows us to study the interplay of
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quantum phenomena, nonlinearity, thermal fluctuations, and dissipation in several classes of
systems. This is important, because methods optimized for one of the sides (e.g., nonlinearity
or quantal behaviour) tend to perform poorly for the others (e.g., fluctuations or dissipation). In
addition, the visualization of W(x, p) plus the knowledge of the classical phase-space structure
(orbits, separatrices, attractors, etc) can provide valuable insight in difficult problems. Finally,
the main limitations of the approach are those that the starting master equations may have. We
have considered the celebrated Caldeira–Leggett quantum master equation, but the method
can be applied to a class of equations of this type, and to possible generalizations.

We have implemented the method in the canonical problem of quantum Brownian motion
in periodic potentials. We have considered both the cosine and the ratchet potentials. For the
former, we have recovered and extended a number of classic results and interpreted them on
the basis of the Wigner formalism. Results for the dynamics under oscillating forcing have also
been obtained, illustrating the modification of the nonlinear effect of spreading of oscillation
frequencies by quantum phenomena. For particles in ratchet potentials we have studied, under
adiabatic conditions, the effects of finite damping on the rectified velocity. Taking into account
the competition of thermal hopping, overbarrier wave reflection and tunnel events, together
with semiclassical analytical results, has allowed us to understand in great detail the physics
of these systems.
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Appendix A. Solving recurrence relations by continued fractions

Here we briefly discuss the solution of recurrence relations by continued-fraction methods.
We first consider three-term recurrences and then differential recurrences, vector-matrix cases,
folding of larger-coupling recursions into three-term ones, and the problem of the initial
conditions. (For a brief description of the relation of continued fractions, series expansions,
recursions and orthogonal polynomials see [69].)

Suppose we have the simplest case of a three-term recurrence relation of the form

Q−
i Ci−1 + QiCi + Q+

i Ci+1 = −fi, i = 0, ±1, ±2, . . . (A.1)

with Qi and fi given quantities. To obtain the Ci one inserts into (A.1) the ansatz [14, 70]
(upper and lower signs for i > 0 and i < 0)

Ci = SiCi∓1 + ai (A.2)

obtaining the following ladder coefficients Si and shifts ai:

Si = − Q∓
i

Qi + Q±
i Si±1

, ai = − fi + Q±
i ai±1

Qi + Q±
i Si±1

. (A.3)

If the recurrence is finite or the Ci decrease quickly with |i| (e.g., when they are coefficients of
some judiciously chosen expansion), we can truncate at some large |i| = I, by setting S±I = 0
and a±I = 0. Next we iterate downwards in (A.3) getting Si and ai, down to i = 0. Then, to
get the Ci from (A.2), we need C0, which is obtained from

(Q−
0 S−1 + Q0 + Q+

0 S1)C0 = −(f0 + Q−
0 a−1 + Q+

0 a1), (A.4)
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combination of equation (A.1) at i = 0 and C±1 = S±1C0 + a±1. Thus, starting from C0,
we iterate Ci = SiCi∓1 + ai upwards, getting the solution of the recursion. For fi ≡ 0
(homogeneous recurrences), we have ai = 0 and the solution reads C

(h)
i = SiSi−1 · · · S1C

(h)
0 .

Note that Si is given in terms of Si+1 in the denominator, which can in turn be written as a
fraction with Si+2 in the denominator, and so on. This has the structure of a continued fraction,
naming the method

C = p1

q1 + p2

q2 + · · ·
. (A.5)

The iterative solution can be cast into explicit form as a series of products of continued
fractions [71]. The above form, however, has the virtue of being easy to implement in a
computer. Convergence is checked by increasing I → 2I → · · · and by repeating the
procedure. Solving equation (A.1) in this way requires a computational effort of order I,
instead of the order I2 of an arbitrary linear algebra problem. This reduction arises from the
tridiagonal structure of the matrix associated to (A.1). (For analytical inversion of tridiagonal
matrices see [72] and references therein.)

We can solve analogously a differential recurrence of the type

dCi/dt = Q−
i Ci−1 + QiCi + Q+

i Ci+1 + fi. (A.6)

Laplace transformation converts this equation into [g̃(s) ≡ ∫ ∞
0 dt e−stg(t)]

Q−
i C̃i−1 + (Qi − s)C̃i + Q+

i C̃i+1 = −[f̃ i + Ci(0)], (A.7)

where ˜̇g(s) = s g̃(s)−g(0) has been used. Then, introducing Q′
i = Qi−s and f ′

i = f̃ i+Ci(0),
the above equation has the structure of the ordinary recurrence (A.1).

The quantities involved in the above recurrences need not to be scalars, but they can be
J-vectors (Ci and fi) and the coefficients Qi are J × J matrices. Then we speak of matrix
continued fractions. The only change in the above solution is that the fraction bars then mean
matrix inversion (‘from the left’, A/B → B−1 A).

This is important because a recurrence relation involving more than three coefficients can
be ‘folded’ into a three-term recurrence by introducing vector and matrix quantities. Let us
show how to do so for the following five-term recursion:

Q−−
i Ci−2 + Q−

i Ci−1 + QiCi + Q+
i Ci+1 + Q++

i Ci+2 = −fi. (A.8)

Defining the 2-vectors

ci =
(

C2i

C2i+1

)
and f i =

(
f2i

f2i+1

)
and the 2 × 2 matrices

Q−
i =

(
Q−−

2i Q−
2i

0 Q−−
2i+1

)
Qi =

(
Q2i Q+

2i

Q−
2i+1 Q2i+1

)
Q+

i =
(

Q++
2i 0

Q+
2i+1 Q++

2i+1

)
,

it can be easily seen that equation (A.8) for 2i and 2i + 1 is equivalent to

Q−
i ci−1 + Qici + Q+

i ci+1 = −f i. (A.9)

Then, insertion of ci = Sici∓1 + ai gives the matrix version of (A.3). Note that the Ci and fi

can already be vectors and the Qi matrices. Then, the above ci, f i and Qi are ‘block’ vectors
and matrices.
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Finally, to iterate upwards ci = Sici∓1 + ai, the ‘initial condition’ c0 is obtained from the
matrix version of (A.4) (which we write Ax = b). As in the absence of forcing (f i = 0) the
general solution involves an overall multiplicative constant, one adds to this system an extra
equation to fix it (e.g., a normalization condition on the coefficients; section 6). Alternatively,
we can fix arbitrarily one element of c0 and rescale the solution at the end. In either case, one
has an extra equation which added to A x = b yields the extended (J + 1) × J system

A∗x = b∗, A∗ =
←− J −→(

A
lhs equation

) ↑
(J+1)

↓
b∗ =


b1
...

bJ

rhs

 (A.10)

This system can be solved by any method appropriate for cases with more equations than
unknowns (e.g., using QR or SVD decomposition [73]), obtaining c0.

Appendix B. Derivation of the transformed evolution operator L

Here we derive L, the w−1(·)w transform of the operator L in the master equation with
w ∝ exp [−(η p2/2 + �)] (equation (10)). We split L as L = Lir + Lkin + Lv, with Lir ,
Lkin, and Lv given by (8). For the ‘product’ of operators we use that the transformation of the
product is equal to the product of the transformations:

AB = A B, Am = (A)m (B.1)

which follows by sandwiching ‘identities’ ww−1 = 1 between the factors. Besides, the
multiplication by functions of (x, p) commutes with w−1( · )w, so that only the differential
terms need to be transformed. From these two properties we see that only ∂x and ∂p need to
be calculated (and then raised to some power or multiplied).

B.1. Calculation of ∂x and ∂p

Calculation of ∂x. In order to transform ∂x, we apply w−1∂xw, to an arbitrary function f(x, p).
The p dependent part of w cancels out and we obtain

∂xf = e�(−∂x� e−�f + e−�∂xf ), � ∂x = ∂x − �′, (B.2)

which has the form of a ‘displaced’ differential operator.
Calculation of ∂p. Applying w−1∂pw to a function f , we similarly get ∂p:

∂pf = eη p2/2(−ηp e−η p2/2f + e−η p2/2∂pf ), � ∂p = ∂p − η p. (B.3)

This ∂p can be expressed in terms of the following creation and annihilation operators:

b = ∂p + 1
2p, b+ = −∂p + 1

2p. (B.4)

Thus, using the shifted η parameters η± = η ∓ 1
2 (equation (14)) we arrive at

∂p = −(η−b+ + η+b). (B.5)

For η = 1/2 (the choice in the classical case), η− = 1 and η+ = 0, so that ∂p = −b+.
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B.2. Calculation of Lir = w−1Lirw

Using the product property A B = A B, we have Lir = γT ∂p(p + ∂p). Then, replacing ∂p by
its ‘bar’ form (B.5) and writing p = b + b+ (from (B.4)), we find

−γ−1
T Lir = η+(1 − η−) + η−(1 − η−)b+b+ + 2(η − η−η+)b+b + η+(1 − η+)bb.

Here we have also used η− +η+ = 2η and the commutation rule [b, b+] = 1 to get a normally
ordered form. If we introduce some compact notation for the coefficients

γd = 2γT (η − η−η+), γ− = γT η−(1 − η−),

γ+− = γT η+(1 − η−), γ+ = γT η+(1 − η+),

we can finally write

Lir = −(γ+− + γ−b+b+ + γdb
+b + γ+bb). (B.6)

(The choice η = 1/2 gives the self-adjoint form Lir = −γT b+b [14].)

B.3. Calculation of Lkin = w−1Lkinw

Using equations (B.2) and (B.5) for ∂x and ∂p, as well as p = b + b+ and the definition (15)
of d± we get for the kinetic part Lkin = −(p − Dxp∂p) ∂x:

Lkin = −bd+(∂x − �′) − b+d−(∂x − �′).

The coefficients of b and b+ are D− and D+, also defined in (15), and we have

Lkin = −(bD+ + b+D−). (B.7)

B.4. Calculation of Lv = w−1Lvw

To obtain Lv = ∑
s�0 κ(s)V (2s+1)∂

(2s+1)
p (see equation (8)), we use the product property (B.1)

to raise ∂p to 2s + 1, obtaining

Lv = −
∑
s�0

κ(s)V (2s+1)(η−b+ + η+b)2s+1. (B.8)

To obtain later the matrix elements of Lv between Hermite functions, it is convenient to cast
(B.8) in a normally ordered form. To this end we use Pathak’s theorems [74] in the following
generalized form:

(a+ + a)2s+1

(2s + 1)!
=

s∑
q=0

:(a+ + a)2(s−q)+1:
[2(s − q) + 1]!

(σ/2)q

q!
. (B.9)

Here :(a+ + a )m: = ∑m
k=0 cm

k (a+)m−ka k with cm
k ≡ m!/[k! (m − k)!] (:f : is the result of

moving the a+ to the left as if they were scalars). The generalization resides in letting a and
a+ have a constant but different from one commutator. In our case

a = η+b, a+ = η−b+, � [a, a+] = σ (B.10)

follows from the commutator [b, b+] = 1 with σ = η−η+. Note that a and a+ are not the
adjoint of each other, but the notation is symbolic.

With the help of equation (B.9) and κ(s) = (−1)sλ2s
dB/(2s+1)! (equation (6)) we can write

(B.8) as follows:

Lv = −
∞∑
s=0

s∑
q=0

As,qX̂
2(s−q)+1, (B.11)
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where we have introduced the notations

As,q = (−1)sλ2s
dB

[2(s − q) + 1]!

(σ/2)q

q!
V (2s+1), X̂� = :(a+ + a)�:.

For a given s different powers of X̂ appear. We take a common factor X̂� and add coefficients,
e.g., A00 + A11 + A22 + · · · with X̂, A10 + A21 + A32 + · · ·, with X̂3, etc

∞∑
s=0

s∑
q=0

As,qX̂
2(s−q)+1 =

∞∑
�=0

( ∞∑
s=�

As,s−�

)
X̂2�+1 =

∞∑
�=0

( ∞∑
q=0

Aq+�,q

)
X̂2�+1.

For s = q + � in As,q we write V [2(q+�)+1] = ∂
2q
x V (2�+1) and introduce the operator �

Aq+�,q = (−�/2)q

q!

(−1)�λ2�
dB

(2� + 1)!
V (2�+1), � = σλ2

dB∂2
x. (B.12)

Now the q and � dependences factorize, so we can sum the series of q in E� ≡ ∑∞
q=0 Aq+�,q,

getting an exponential. Then, recalling the definition of κ(s) we finally obtain the normally
ordered form for Lv we were looking for

Lv = −
∞∑

�=0

E�:(a+ + a)2�+1:, E� = κ(�) exp(−�/2)V (2�+1). (B.13)

The operator exp(−�/2) does not act on what could appear after V(x), since � was introduced
as some abbreviated notation for the high-order derivatives of the potential.

Appendix C. The different contributions to ∂tCn =
∑

mQ̂nmCm

Here we calculate the matrix elements Q̂nm = ∫
dp ψnL ψm, with the transformed operator

L = Lir +Lkin +Lv obtained in appendix B. We split in parts the calculation by introducing the
corresponding decomposition: Q̂ir

nm = 〈n|Lir|m〉, Q̂kin
nm = 〈n|Lkin|m〉 and Q̂v

nm = 〈n|Lv|m〉,
where we have used the custom ‘bra’–‘ket’ notation. The calculation is simplified because
we have all operators L expressed as normally ordered forms of b and b+. Then we can take
advantage of the ladder actions b+|n〉 = √

n + 1 |n + 1〉, b |n〉 = √
n |n − 1〉, and the number

property b+b |n〉 = n |n〉.

C.1. Calculation of
∑

m Q̂ir
nmCm

From (B.6) for Lir and the orthonormality of the |m〉, we find for Q̂ir
nm = 〈n|Lir|m〉

−Q̂ir
nm = γ−

√
(n − 1)nδn−2,m + (nγd + γ+−)δnm + γ+

√
(n + 1)(n + 2)δn+2,m.

Then, we introduce the notation γn = n γd + γ+− for the coefficient of the diagonal term (cf
equation (13)), multiply by Cm and sum over m, obtaining

−
∑
m

Q̂ir
nmCm = γ−

√
(n − 1)nCn−2 + γnCn + γ+

√
(n + 1)(n + 2)Cn+2. (C.1)
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C.2. Calculation of
∑

m Q̂kin
nmCm

Using equation (B.7) for Lkin and the ‘ladder’ action of b and b+, we have

Q̂kin
nm = −〈n|bD+ + b+D−|m〉 = −(

√
n + 1 D+δn+1,m + √

n D−δn−1,m),

where we have used the Kronecker delta to interchange n and m ∓ 1. Then, multiplying by
Cm and summing over m, one obtains∑

m

Q̂kin
nmCm = −(

√
nD−Cn−1 + √

n + 1D+Cn+1). (C.2)

C.3. Calculation of
∑

m Q̂v
nmCm

This calculation is more tedious. Firstly, the operator :(a+ + a )2�+1: appearing in equation
(B.10) for Lv can be put in explicit form by using the binomial formula

:(a+ + a)2�+1: =
2�+1∑
k=0

c2�+1
k (a+)2�+1−kak. (C.3)

The a and a+ are proportional to b and b+ (equation (B.10)), so the contribution of each
summand to 〈n|Lv|m〉 involves 〈n|(b+)2�+1−kb k|m〉 ∝ 〈n − (2� + 1) + k|m − k〉. From
orthonormality only one term of the sum (C.3) will contribute, namely 2k = (m−n)+2�+1,
while m − n will be odd, m = n ∓ (2s + 1) with s � 0 (reflecting the odd powers of ∂p in Lv).
Then, in terms of s, the index k is restricted to

k =
{
� − s, for m = n − (2s + 1),
� + s + 1, for m = n + (2s + 1).

(C.4)

Relating the results for m = n ∓ (2s + 1). The two cases can be easily related. Firstly,
the combinatorial coefficients are equal c2�+1

�+s+1 = c2�+1
�−s , because cm

k = cm
m−k. Secondly, the η

factors, coming from the proportionality of the a, a+, to b, b+, are simply obtained from each
other by exchanging plus and minus symbols (σ = η−η+):

k = � − s � η�+s+1
− η�−s

+ = σ�−sη2s+1
− ,

k = � + s + 1 � η�−s
− η�+s+1

+ = σ�−sη2s+1
+ .

(C.5)

Finally, the matrix elements are also relatable. For m = n − (2s + 1), we have
〈n|(b+)�+s+1b �−s|n − (2s + 1)〉, while for m = n + (2s + 1)

〈n|(b+)�−sb�+s+1|n + (2s + 1)〉 = 〈m|(b+)�+s+1b�−s|m − (2s + 1)〉,
which is formally identical to the former by replacing n → n′ = m and m → m′ = n.

Thus, from now onwards, we consider only the case m = n − (2s + 1) (factor σ�−sη2s+1
− ).

The result for m = n + (2s + 1), will be readily obtained from this by replacing

n′ = m, m′ = n′ − (2s + 1) and η2s+1
− → η2s+1

+ . (C.6)

From all these considerations, we can write the matrix elements of :(a+ + a )2�+1: as

〈n|:(a+ + a)2�+1:|m〉 = η2s+1
− c2�+1

�−s σ�−s〈n|(b+)�+s+1b�−s|m〉
where we omit a Kronecker delta ensuring m = n − (2s + 1). The rest of the calculation
consists of multiplying this by E� and sum over all � to get 〈n|Lv|m〉 (equation (B.13)).
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Restrictions on the sum on �. The contribution of the infinite sum (B.13) to 〈n|Lv|m〉 is
fortunately cut-off. Firstly, the lower index in c2�+1

�−s should be positive and, introducing the
shifted index �′ = � − s, we obtain (we rename �′ → � at the end)

〈n|Lv|m〉 = −η2s+1
−

m∑
�=0

E�+sc
2(�+s)+1
� σ�〈n|(b+)(2s+1)+�b�|m〉. (C.7)

Here we have already used that the sum is also cut-off from above at �max = m, since b�|m〉 ≡ 0,
for � > m. On the other hand, for E�+s (equation (B.13)) we have

E�+s = e−�/2 (2s + 1)!

[2(� + s) + 1]!
(−λ2

dB∂2
x)

� (−1)sλ2s
dB

(2s + 1)!
V (2s+1). (C.8)

Combining this with c
2(�+s)+1
� , gathering (λ2

dB∂2
x)

� with σ� to form the operator � (equation
(B.12)), and recalling definition (6) of κ(s), we obtain

〈n|Lv|m〉 = −η2s+1
− κ(s)e−�/2

m∑
�=0

(2s + 1)!

[(2s + 1) + �]!
〈n|(b+)(2s+1)+�b�|m〉 (−�)�

�!
V (2s+1).

Note that the quotient of factorials equals 1/(2s + 2)�, with the Pochhammer symbol defined
by ([37], chapter 13.5)

(a)� = a(a + 1) · · · (a + � − 1) = (a + � − 1)!/(a − 1)!. (C.9)

Computation of the matrix element. To conclude, we only need the matrix element
〈n|(b+)(2s+1)+�b�|m〉 in (C.7). We first pass 2s + 1 times the action of b+ to |n〉 by taking its
adjoint b and then we use repeatedly its downward ladder action, obtaining

b2s+1|n〉 =
√

n(n−1) · · · (n−2s) |n−(2s+1)〉 =
√

n!/m!|m〉 (C.10)

with m = n − (2s + 1). Then, in terms of the Pochhammer symbol (C.9), we can write

〈n|(b+)(2s+1)+�b�|m〉 =
√

n!/m!〈m|(b+)�b�|m〉 =
√

n!/m!(−1)�(−m)�.

Now, taking into account that the factor (−1)� cancels that of (−�)� and using the modified
coefficient κ(s)

n = κ(s)
√

n!/m! (equation (16)), we arrive at

〈n|Lv|m〉 = −η2s+1
− κ(s)

n e−�/2

[
m∑

�=0

(−m)�

(2s + 2)�

��

�!

]
V (2s+1).

Comparing this with the series definition of the confluent hypergeometric (Kummer) function
1F1(a, c; z) ([37], chapter 13.6) we obtain

〈n|Lv|m〉 = −η2s+1
− κ(s)

n [e−�/2
1F1(−m, 2s + 2; �)]V (2s+1)

1F1(a, c; z) =
∞∑

�=0

(a)�

(c)�

z�

�!
.

The operator in front of V(x) is simply s,−
n (equation (16)), so that we can finally write

Q̂v
nm = 〈n|Lv|m〉 = −s,−

n V (2s+1)(x), m = n − (2s + 1). (C.11)

Note that 1F1(−m, 2s + 2; z) is a polynomial because the first negative index cuts the upper
Pochhammer symbol. Indeed the ‘integer-plus-one’ second argument (2s+ 1)+ 1 tells us that
it is an associated Laguerre polynomial ([37], chapter 13)

Lk
�(z) = (� + k)!

k!�!
1F1(−�, k + 1; z). (C.12)

In our case � = m and k = n − m = 2s + 1, so that 1F1(−m, 2s + 2; z) = L2s+1
m (z)/cm

n .
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Final expressions for
∑

m Q̂v
nmCm. Once we have computed Q̂v

nm, the matrix elements
of Lv, we multiply by Cm and sum over m (i.e., over s), to get∑

m<n

Q̂v
nmCm = −

∑
s�0

[s,−
n V (2s+1)]Cn−(2s+1).

Note that this s-sum is restricted because n − (2s + 1) � 0. This yields the upper limit
smax = [(n − 1)/2], with [a] the integer part of a. The contribution from m > n is easily
obtained recalling the transformation rules (C.6) (here the sum is not restricted)∑

m>n

Q̂v
nmCm = −

∑
s�0

[s,+
n+(2s+1)V

(2s+1)]Cn+(2s+1)

with s,+
n given by (16). We have enclosed in square brackets the action of the operators s,±

n

to recall that they only act on the x-dependence of the potential.
For η = 1/2, the choice in the classical case, η− = 1, η+ = 0, and σ = 0. Then,

s,−
n (σ = 0) = κ(s)

n and s,+
n (σ = 0) = 0, so that only the Cn−(2s+1) terms survive. The chain

of equations then aquires an unbalanced structure (like in the old hierarchies [38, 40, 41]),
which may result in a poor stability when the quantum terms are important. In contrast, η ∼ 0
gives |η±| ∼ 1/2, and hence the weight of the terms at both sides of n is similar (∼ above and
below the diagonals in the matrices Qαβ), improving the stability when going into the deep
quantum regime.

Appendix D. The auxiliary integrals Iα and K(�)
n

For special η and �, the integrals Iα and K(�)
n (equation (29)) appearing in the expressions (30)

for the observables, are easily done. For η = 1/2, we simply have K(0)
n = δn,0, K(1)

n = δn,1,
and K(2)

n = δn,0 + √
2 δn,2. If � = 0 (i.e., ε = 0), we get Iα = I0δα,0. Then the first moments

reduce to 1 = I0C
0
0 (normalization) and to 〈p〉 = I0C

0
1 and 〈p2〉 = I0(C

0
0 + √

2C0
2). In the

general case, one can derive recurrences relating the K(�)
n with lower order (in �) ones. Thus,

only K(0)
n is needed, which can be found analytically. Concerning the Iα, we mostly use ε = 0,

and hence Iα = I0δα,0. In any case, for periodic potentials one can derive recurrence relations
for them which can also be solved by continued fractions.

D.1. The integrals K(�)
n (arbitrary potentials)

To obtain the recurrence for the K(�)
n we start from their definition (29) with index �+1, express

the last p as p = b + b+ (equation (B.4)), and then use pψn = √
nψn−1 + √

n + 1ψn+1,
obtaining

K(�+1)
n = √

nK
(�)
n−1 + √

n + 1K
(�)
n+1. (D.1)

This recurrence can be used to get the K(�+1)
n from the K(�)

n .
We can get analytical expressions for the first few K(�)

n with help from the tabulated integral
([75], equation (7.374-4))∫ ∞

−∞
dx e−x2

Hm(x)H2n+m(ax) = √
π

(2n + m)!

n!
(2a)m(a2 − 1)n. (D.2)

For K(0)
n = r0

∫
e−ηp2/2ψn, we use this result with m = 0, obtaining

K
(0)
2n+1 = 0, K

(0)
2n =

√
(2n)!

n!
η

−1/2
− �n, � = −η+/2η−. (D.3)
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Although K(1)
n and K(2)

n can now be obtained from (D.1), they can also be done from equation
(D.2), obtaining K

(1)
2n = 0, K

(2)
2n+1 = 0, and

K
(1)
2n+1 =

√
(2n + 1)!

n!

1

η
3/2
−

�n, K
(2)
2n =

√
(2n)!

n!

1

η
3/2
−

(
n

η−
+ �

)
�n−1. (D.4)

D.2. Recursions for the integrals Iα (periodic potentials)

For a general periodic potential we can derive a recurrence relation for the integrals Iα =∫ 2π

0 dx exp[−εV(x)]uα(x) (equation (29)). We integrate by parts the expression for iαIα and
use V ′ = ∑

α V ′
αeiαx with uα = eiαx/

√
2π, obtaining

iαIα = ε
∑

β

V ′
βIα+β. (D.5)

For a finite number of harmonics (V ′
β ≡ 0, if |β| > B), the recurrence (D.6) has a finite

coupling range. For instance, for the ratchet potential (38), we have V ′
±1 = −V0/2kBT and

V ′
±2 = −rV0/2kBT and the above recurrence reduces to

iαIα = −εT [(Iα−1 + Iα+1) + r(Iα−2 + Iα+2)], εT = εV0/2kBT. (D.6)

With I0 as input (obtained numerically, e.g., by the Simpson rule ([37], appendix 2)), this
recursion can be solved by continued fractions (appendix A).

Appendix E. The matrices Qαβ for general periodic potentials

Here we write explicitly the matrices Qαβ for arbitrary periodic potentials. We shall give the
results for a slightly generalized basis, obtained by shifting the origin of momenta by an amount
ρ (cf equation (26)):

W(x, p) = w(x, p − ρ)
∑
n,α

Cα
nuα(x)ψn(p − ρ). (E.1)

This momentum shift is convenient to ‘catch’ solutions centred far from zero p, where the
ordinary basis would need many ψn(p) to reconstruct the distribution. (A useful choice is,
when generating a curve, to set ρ = 〈p〉 of the precedent point.) The momentum shift is
handled as a change of variable p → pρ = p − ρ. Then, ∂p = ∂pρ

, but the term p∂x makes
the force to enter in the combination (scaled units)

Fρ = F − γT ρ. (E.2)

As mentioned in section 7, we extract the force F from V(x) and set the auxiliary potential �

proportional to the periodic part � = εV .
The Qαβ are obtained by inserting the formulae for D±

αβ, and [s,±
n V (2s+1)]αβ (equation

(35)), into the general matrices of section 5. Instead of giving a single expression, we write
separately the matrices for β = α and β = α± q. The central matrix Qαα is determined by the
terms involving δαβ, and reads

−Qαα =



γ0+ρ iα
√

1(id+α−η+Fρ)
√

1 · 2 γ+ 0 0
. . .

√
1(id−α−η−Fρ) γ1+ρ iα

√
2(id+α−η+Fρ)

√
2 · 3 γ+ 0

. . .

√
1 · 2 γ−

√
2(id−α−η−Fρ) γ2+ρ iα

√
3(id+α−η+Fρ)

√
3 · 4 γ+

. . .

0
√

2 · 3 γ−
√

3(id−α−η−Fρ) γ3+ρ iα
√

4(id+α−η+Fρ)
. . .

0 0
√

3 · 4 γ−
√

4(id−α−η−Fρ) γ4+ρ iα
. . .

. . .
. . .

. . .
. . .

. . .
. . .
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with γ± and γn given by (13), η± = η∓1/2, and d± = 1+η±Dxp. Here the periodic potential
does not appear; only F enters in the matrices Qαα. Besides, they do depend on the index α

(cf below).
The matrices Qα,α±q are determined by the terms involving V ′

α−β in equation (35) and read

−Qα,α±q = V ′
∓q



−ρ ε η+G0
1−√

1 ε 0 η3
+G1

3 0 η5
+G2

5

. . .

η−G0
1−√

1 ε −ρ ε η+G0
2−√

2 ε 0 η3
+G1

4 0
. . .

0 η−G0
2−√

2 ε −ρ ε η+G0
3−√

3 ε 0 η3
+G1

5

. . .

η3
−G1

3 0 η−G0
3−√

3 ε −ρ ε η+G0
4−√

4 ε 0
. . .

0 η3
−G1

4 0 η−G0
4−√

4 ε −ρ ε η+G0
5−√

5 ε
. . .

η5
−G2

5 0 η3
−G1

5 0 η−G0
5−√

5 ε −ρ ε
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


,

where Gs
n is evaluated at z = −σq2λ2

dB, with σ = η−η+. These matrices enjoy properties
opposite to those of Qαα. The substrate potential does appear (multiplying all elements in
front of the matrices) while the force is absent. Besides, the matrices Qα,α±q are independent
of the index α, which permits to write them simply as Q±q. The only technical complication
with respect to the common choice η = 1/2 is that we need to compute the Kummer
functions 1F1(a, c; z) included in Gs

n, which in our case are simple polynomials (equation
(C.12)). Note that to compute the observables we must eventually undo the momentum shift
pρ → p = pρ + ρ.

Appendix F. Semiclassical analytical results

In this appendix we derive some semiclassical formulae discussed in the main text.

F.1. Reflection and transmission for a saw-tooth barrier

In section 8.2, we invoked the current through a saw-tooth barrier deformed by ±Fx

(figure F.1). We introduced the reflection coefficients R+ and R− for ±F . One has to analyse
separately the cases of incident particles with energies above or below the barrier. In the first
case, the reflection coefficient by a potential with a cusp (with slopes f1 and f2) is given by
the first equation (45) ([62], section 52). Owing to the right slope in figure F.1 is infinity, we
make it finite and finally take the vertical limit, getting

R+
R−

= V0 − FL

V0 + FL
< 1. (F.1)

Next we consider the case of tunnelling through the barrier. The semiclassical transmission
coefficient is also written in (45). Defining A = | ∫ b

a
dx p(x)|, we calculate A+ and A− for

positive and negative forces. After simple integrals, we find

A+
A−

= V0 + FL

V0 − FL

(
V0 − FL − E

V0 − E

)3/2

(F.2)

with E the particle energy (cf [48]). For moderate forces, F � 0.618V0/L, we get for the
transmission coefficients T = exp [ − (2/h̄)A]

A+/A− > 1 � T+/T− < 1. (F.3)

Thus, for E below the barrier R+/R− > 1, while R+/R− < 1 for E above the barrier.
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Figure F.1. Left panel: profile of the saw-tooth potential barrier for non-deformed (a) and deformed
by −Fx (b) and by +Fx (c). Right panel: width of the energy bands Wb in a cosine potential (exact
and various approximations).

F.2. Transmission coefficient and energy bands for a cosine potential

In order to get the semiclassical transmision coefficient through a potential
V(x) = −V0 cos(x/x0), we need to integrate

A =
∣∣∣∣∫ b

a

dx
√

2M[E + V0 cos(x/x0)]

∣∣∣∣ (F.4)

with turning points obeying cos(a/x0) = cos(b/x0) = −E/V0. Due to E + V0 cos(x/x0) < 0
below the barrier, we change the sign inside the square root extracting an i which is absorbed
by the modulus. Simple transformations bring the integral into a tabulated form ([75], equation
(2.576)), and we obtain

A = 4S0[2E(s) − (1 + ε)K(s)], ε = E/V0, s =
√

1
2 (1 − ε),

(F.5)

where S0 =
√

MV0x
2
0, and K(s) and E(s) are the first and second complete elliptic integrals

([37], chapter 5.8). Insertion in T = exp [−(2/h̄)A] gives the transmision coefficient through
a cosine potential. This T also gives the semiclassical energy bands ([76], section 55)

Eq = E0 ± (h̄ω0/π)
√

T cos(2πx0q), (F.6)

with ω0 the oscillation frequency in the wells. The width of the bands is therefore

Wb = 2(h̄ω0/π) exp{−4(S0/h̄)[2E(s) − (1 + ε)K(s)]}, ε = E/V0. (F.7)

The parameter s goes from 1 when ε = −1 (potential bottom) to 0 at the barrier top ε = 1.
For s ∼ 1 we can expand the elliptic integrals, obtaining

Wb  2(h̄ω0/π) exp
[−(S0/h̄)

(
8 − (1 + ε)

{
1 + ln

[
1

32 (1 + ε)
]}

+(1 + ε)2
{
1 + 1

8 ln
[

1
32 (1 + ε)

]})]
. (F.8)
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At the potential bottom ε = −1 this gives Wb = exp[−8(S0/h̄)]. The bandwidth increases
exponentially with the energy. Near the top, ε ∼ 1, one has s ∼ 0, and we can use the series
expansion of the elliptic integrals, obtaining

Wb  2(h̄ω0/π) exp[−π(S0/h̄)(1 − ε)]. (F.9)

Figure F.1 shows that equations (F.8) and (F.9) approximate well the exact results in their
respective ranges (the later also serves as an upper bound). If we disregard the terms with
(1 + ε)2 in (F.8), the result happens to fit remarkably Wb in all the range.

Appendix G. Perturbative solution for periodic forcing

Here we shall solve the following generic differential equation:

τ
dc

dt
+ Qc = f(t)Vc, f(t) = f+e+iωt + f−e−iωt (G.1)

perturbatively in the forcing f . (For cosine forcing f+ = f− = f/2.) Comparing with section
9, we see that c corresponds to the vectors cα, Q to the static part of the matrices Qαβ, and the
perturbation V to �Qαα, the part of Qαα involving �F .

A periodic solution can be Fourier-expanded as

c = C(0) +
∞∑

k=1

(f k
+C(k)e+iωkt + f k

−C̃(k)e−iωkt), ωk = kω (G.2)

with C(0) the unperturbed response, while C̃(k) �= C(k)∗ for complex c. Separating terms
oscillating with e+iωkt and e−iωkt , the left-hand side of (G.1) reads

τ
dc

dt
+ Qc = QC(0) +

∞∑
k=1

f k
+[i(ωkτ)C

(k) + QC(k)]e+iωkt

+
∞∑

k=1

f k
−[−i(ωkτ)C̃

(k) + QC̃(k)]e−iωkt .

To obtain the right-hand side, we use ωk ± ω = kω ± ω = ωk±1, redefine the indices
(keeping the same names) to get all the oscillating factors at ±ωkt, and introduce the definition
C̃(0) ≡ C(0), arriving at

f(t)Vc = f+f−(VC(1) + VC̃(1)) +
∞∑

k=1

f k
+[VC(k−1) + (f+f−)VC(k+1)]e+iωkt

+
∞∑

k=1

f k
−[VC̃(k−1) + (f+f−)VC̃(k+1)]e−iωkt .

Equating terms with the same oscillating factors on both sides (uniqueness of the Fourier
expansion), we obtain

QC(0) = V[0 + (f+f−)(C(1) + C(−1))],

i(ωkτ)C
(k) + QC(k) = V[C(k−1) + (f+f−)C(k+1)].

(G.3)

The C̃(k) are included as C(−k) ≡ C̃(k) with ω−k = −ωk.
The contribution VC(k−1) comes from products of ‘rotating’ terms e±iωt × e±iωkt . For

instance, the oscillating factor e+iωk−1t in C(k−1) when multiplied by the part e+iωt of the field
raises the harmonic from k − 1 to k. The term VC(k+1) comes from products of ‘counter-
rotating’ terms e±iωt ×e∓iωkt . For example, the product of the oscillating factor e+iωk+1t and the
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e−iωt part of the field lowers the order from k + 1 to k. This contribution (the ‘contamination’
from higher harmonics) has an order higher in f than the contribution of C(k−1), which is
therefore the leading one. Indeed, expanding the C(k) in powers of f we get the leading terms
at each harmonic

QC(0) = 0, i(ωkτ)C
(k) + QC(k) = VC(k−1). (G.4)

The k = 0 equation gives the static response (corresponding to equation (48)), k = 1 the linear
dynamical response, etc (corresponding to equation (49)).
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